n边三角形内角和是〔n-2〕×180°(n为边数),三角形内角和定理:三角形三个内角和等于180°,用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°,也可以用全称命题表示为:∀△ABC,∠1+∠2+∠3=180°。
任意n边形的内角和公式为θ=180°×(n-2),其中,θ是n边形内角和,n是该多边形的边数,从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)×180°,∀n=3,4,5,…。