根据公式C=n!/(n-x)!计算即可,例如4!=4x3x2x1=24,x!(n-x)!=2!x(4-2)!=2x1x2x1=4,所以结果为6。在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。