计数排序算法

作者:原创时间:2022-05-22
文档

排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是计数排序算法:

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1. 计数排序的特征

当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。

由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。

通俗地理解,例如有 10 个年龄不同的人,统计出有 8 个人的年龄比 A 小,那 A 的年龄就排在第 9 位,用这个方法可以得到其他每个人的位置,也就排好了序。当然,年龄有重复时需要特殊处理(保证稳定性),这就是为什么最后要反向填充目标数组,以及将每个数字的统计减去 1 的原因。

?算法的步骤如下:

  • (1)找出待排序的数组中最大和最小的元素
  • (2)统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • (3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • (4)反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

2. 动图演示


代码实现

JavaScript

实例

function countingSort(arr, maxValue) {
    var bucket = new Array(maxValue+1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;

    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0;
        }
        bucket[arr[i]]++;
    }

    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j] > 0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }

    return arr;
}

Python

实例

def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

Go

实例

func countingSort(arr []int, maxValue int) []int {
        bucketLen := maxValue + 1
        bucket := make([]int, bucketLen) // 初始为0的数组

        sortedIndex := 0
        length := len(arr)

        for i := 0; i < length; i++ {
                bucket[arr[i]] += 1
        }

        for j := 0; j < bucketLen; j++ {
                for bucket[j] > 0 {
                        arr[sortedIndex] = j
                        sortedIndex += 1
                        bucket[j] -= 1
                }
        }

        return arr
}

Java

实例

public class CountingSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxValue = getMaxValue(arr);

        return countingSort(arr, maxValue);
    }

    private int[] countingSort(int[] arr, int maxValue) {
        int bucketLen = maxValue + 1;
        int[] bucket = new int[bucketLen];

        for (int value : arr) {
            bucket[value]++;
        }

        int sortedIndex = 0;
        for (int j = 0; j < bucketLen; j++) {
            while (bucket[j] > 0) {
                arr[sortedIndex++] = j;
                bucket[j]--;
            }
        }
        return arr;
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }

}

PHP

实例

function countingSort($arr, $maxValue = null)
{
    if ($maxValue === null) {
        $maxValue = max($arr);
    }
    for ($m = 0; $m < $maxValue + 1; $m++) {
        $bucket[] = null;
    }

    $arrLen = count($arr);
    for ($i = 0; $i < $arrLen; $i++) {
        if (!array_key_exists($arr[$i], $bucket)) {
            $bucket[$arr[$i]] = 0;
        }
        $bucket[$arr[$i]]++;
    }

    $sortedIndex = 0;
    foreach ($bucket as $key => $len) {
       
        if($len !== null){
            for($j = 0; $j < $len; $j++){
                $arr[$sortedIndex++] = $key;
            }
        }
    }

    return $arr;
}

C

实例

#include
#include
#include

void print_arr(int *arr, int n) {
        int i;
        printf("%d", arr[0]);
        for (i = 1; i < n; i++)
                printf(" %d", arr[i]);
        printf(" ");
}

void counting_sort(int *ini_arr, int *sorted_arr, int n) {
        int *count_arr = (int *) malloc(sizeof(int) * 100);
        int i, j, k;
        for (k = 0; k < 100; k++)
                count_arr[k] = 0;
        for (i = 0; i < n; i++)
                count_arr[ini_arr[i]]++;
        for (k = 1; k < 100; k++)
                count_arr[k] += count_arr[k - 1];
        for (j = n; j > 0; j--)
                sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];
        free(count_arr);
}

int main(int argc, char **argv) {
        int n = 10;
        int i;
        int *arr = (int *) malloc(sizeof(int) * n);
        int *sorted_arr = (int *) malloc(sizeof(int) * n);
        srand(time(0));
        for (i = 0; i < n; i++)
                arr[i] = rand() % 100;
        printf("ini_array: ");
        print_arr(arr, n);
        counting_sort(arr, sorted_arr, n);
        printf("sorted_array: ");
        print_arr(sorted_arr, n);
        free(arr);
        free(sorted_arr);
        return 0;
}

参考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/8.countingSort.md

https://zh.wikipedia.org/wiki/%E8%AE%A1%E6%95%B0%E6%8E%92%E5%BA%8F

以上为计数排序算法详细介绍,插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等排序算法各有优缺点,用一张图概括:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模

k:"桶"的个数

In-place:占用常数内存,不占用额外内存

Out-place:占用额外内存

稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

显示全文
桶排序算法 基数排序算法 排序算法 助人为乐的谚语和名言 春天的谚语 春分的谚语 团结的谚语 帮助人的谚语 谚语的意思 关于关爱的谚语 学习的名言 关于学习的名人名言 关于爱国的名言 陶渊明的名句 激励自己的名言 关于保护环境的名言 叶圣陶的名言 关于家的名言 关于交友的名言警句 有关友谊的名言 堆排序算法 快速排序算法 归并排序算法 希尔排序算法 插入排序算法 选择排序算法 冒泡排序算法 清明的谚语 关于清明的谚语 清明节的谚语 珍惜时间的名言 愁的诗句 含雁的诗句 想念的诗句 牡丹花的诗句 带马字的诗句 关于思念的诗句 描写春天花朵的诗句 js中toString方法3个作用 python绘图中的四个绘图技巧