考试中不能直接使用,会扣一些分,最好是证明一下。如果是已知是中线,又是高线,那就是垂直平分线,根据定理(垂直平分线上的点到角两边的距离相等),所以两边相等。
三线合一的逆定理的应用
如图,①AD⊥BC于D,②AD平分∠BAC,③AD是BC中线
(1)若以①②为条件,求证AB=AC。理由如下:
∵∠ADB=∠ADC=90°,∠BAD=∠CAD,AD=AD,
∴△ABD≌△ACD(ASA)
∴AB=AC
(2)若以②③为条件,求证AB=AC。理由如下:
∵AD是BC中线,
∴S△ABD=S△ACD,
作DE⊥AB于E,DF⊥AC于F,
又∵AD平分∠BAC,
∴DE=DF,
∴AB=AC(等底等高)
(3)若①③,求证AB=AC。理由如下:
∵BD=CD,∠ADB=∠ADC=90°,AD=AD,
∴△ABD≌△ACD,
∴AB=AC