闭区间连续的证明比开区间多了一步——两端点的连续证明。在已经证得该函数在该闭区间内连续,之后在两端点处,左极限等于左端点的函数值,右极限等于右端点的函数值,那么就可以说明函数在该闭区间上连续。
直线上介于固定的两点间的所有点的集合(不包含给定的两点),用(a,b)来表示(不包含两个端点a和b)。开区间的实质仍然是数集,该数集用符号(a,b)表示,含义一般是在实数a和实数b之间的所有实数,但不包含a和b。相当于{x|a<x<b},记作(a,b)取值不包括a、b。