堆排序算法

作者:原创时间:2022-05-22
文档

排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是堆排序算法:

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示


代码实现

JavaScript

实例

var len;    // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) {   // 建立大顶堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     // 堆调整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length-1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}

Python

实例

def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
    return arr

Go

实例

func heapSort(arr []int) []int {
        arrLen := len(arr)
        buildMaxHeap(arr, arrLen)
        for i := arrLen - 1; i >= 0; i-- {
                swap(arr, 0, i)
                arrLen -= 1
                heapify(arr, 0, arrLen)
        }
        return arr
}

func buildMaxHeap(arr []int, arrLen int) {
        for i := arrLen / 2; i >= 0; i-- {
                heapify(arr, i, arrLen)
        }
}

func heapify(arr []int, i, arrLen int) {
        left := 2*i + 1
        right := 2*i + 2
        largest := i
        if left < arrLen && arr[left] > arr[largest] {
                largest = left
        }
        if right < arrLen && arr[right] > arr[largest] {
                largest = right
        }
        if largest != i {
                swap(arr, i, largest)
                heapify(arr, largest, arrLen)
        }
}

func swap(arr []int, i, j int) {
        arr[i], arr[j] = arr[j], arr[i]
}

Java

实例

public class HeapSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int len = arr.length;

        buildMaxHeap(arr, len);

        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
        return arr;
    }

    private void buildMaxHeap(int[] arr, int len) {
        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
            heapify(arr, i, len);
        }
    }

    private void heapify(int[] arr, int i, int len) {
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        int largest = i;

        if (left < len && arr[left] > arr[largest]) {
            largest = left;
        }

        if (right < len && arr[right] > arr[largest]) {
            largest = right;
        }

        if (largest != i) {
            swap(arr, i, largest);
            heapify(arr, largest, len);
        }
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

}

PHP

实例

function buildMaxHeap(&$arr)
{
    global $len;
    for ($i = floor($len/2); $i >= 0; $i--) {
        heapify($arr, $i);
    }
}

function heapify(&$arr, $i)
{
    global $len;
    $left = 2 * $i + 1;
    $right = 2 * $i + 2;
    $largest = $i;

    if ($left < $len && $arr[$left] > $arr[$largest]) {
        $largest = $left;
    }

    if ($right < $len && $arr[$right] > $arr[$largest]) {
        $largest = $right;
    }

    if ($largest != $i) {
        swap($arr, $i, $largest);
        heapify($arr, $largest);
    }
}

function swap(&$arr, $i, $j)
{
    $temp = $arr[$i];
    $arr[$i] = $arr[$j];
    $arr[$j] = $temp;
}

function heapSort($arr) {
    global $len;
    $len = count($arr);
    buildMaxHeap($arr);
    for ($i = count($arr) - 1; $i > 0; $i--) {
        swap($arr, 0, $i);
        $len--;
        heapify($arr, 0);
    }
    return $arr;
}

C

实例

#include
#include

void swap(int *a, int *b) {
    int temp = *b;
    *b = *a;
    *a = temp;
}

void max_heapify(int arr[], int start, int end) {
    // 建立父節點指標和子節點指標
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子節點指標在範圍內才做比較
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
            son++;
        if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數
            return;
        else { // 否則交換父子內容再繼續子節點和孫節點比較
            swap(&arr[dad], &arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    int i;
    // 初始化,i從最後一個父節點開始調整
    for (i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢
    for (i = len - 1; i > 0; i--) {
        swap(&arr[0], &arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    int i;
    for (i = 0; i < len; i++)
        printf("%d ", arr[i]);
    printf(" ");
    return 0;
}

C++

实例

#include
#include
using namespace std;

void max_heapify(int arr[], int start, int end) {
    // 建立父節點指標和子節點指標
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子節點指標在範圍內才做比較
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
            son++;
        if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數
            return;
        else { // 否則交換父子內容再繼續子節點和孫節點比較
            swap(arr[dad], arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    // 初始化,i從最後一個父節點開始調整
    for (int i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先將第一個元素和已经排好的元素前一位做交換,再從新調整(刚调整的元素之前的元素),直到排序完畢
    for (int i = len - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    for (int i = 0; i < len; i++)
        cout << arr[i] << ' ';
    cout << endl;
    return 0;
}

参考文章:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

以下是热心网友对堆排序算法的补充,仅供参考:

热心网友提供的补充1:

上方又没些 C# 的堆排序,艾孜尔江补充如下:

/// 
/// 堆排序
/// 
/// 待排序数组
static void HeapSort(int[] arr)
{
    int vCount = arr.Length;
    int[] tempKey = new int[vCount + 1];
    // 元素索引从1开始
    for (int i = 0; i < vCount; i++)
    {
        tempKey[i + 1] = arr[i];
    }
    // 初始数据建堆(从含最后一个结点的子树开始构建,依次向前,形成整个二叉堆)
    for (int i = vCount / 2; i >= 1; i--)
    {
        Restore(tempKey, i, vCount);
    }
    // 不断输出堆顶元素、重构堆,进行排序
    for (int i = vCount; i > 1; i--)
    {
        int temp = tempKey[i];
        tempKey[i] = tempKey[1];
        tempKey[1] = temp;
        Restore(tempKey, 1, i - 1);
    }
    //排序结果
    for (int i = 0; i < vCount; i++)
    {
        arr[i] = tempKey[i + 1];
    }
}
/// 
/// 二叉堆的重构(针对于已构建好的二叉堆首尾互换之后的重构)
/// 
/// 
/// 根结点j
/// 结点数
static void Restore(int[] arr, int rootNode, int nodeCount)
{
    while (rootNode <= nodeCount / 2) // 保证根结点有子树
    {
        //找出左右儿子的最大值
        int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
        if (arr[m] > arr[rootNode])
        {
            int temp = arr[m];
            arr[m] = arr[rootNode];
            arr[rootNode] = temp;
            rootNode = m;
        }
        else
        {
            break;
        }
    }
}

热心网友提供的补充2:

堆排序是不稳定的排序!

既然如此,每次构建大顶堆时,在 父节点、左子节点、右子节点取三者中最大者作为父节点就行。我们追寻的只是最终排序后的结果,所以可以简化其中的步骤。

我将个人写的 Java 代码核心放在下方,有兴趣的同学可以一起讨论下:

public int[] sort(int a[]) {
    int len = a.length - 1;    
    for (int i = len; i > 0; i--) {
        maxHeap(a, i);        
        //交换 跟节点root 与 最后一个子节点i 的位置        
        swap(a, 0, i);        
        //i--无序数组尺寸减少了 
    }  
    return a;
}

/**构建一个大顶堆(完全二叉树 ) 
* 从  最后一个非叶子节点  开始,若父节点小于子节点,则互换他们两的位置。然后依次从右至左,从下到上进行! 
* 最后一个非叶子节点,它的叶子节点 必定包括了最后一个(叶子)节点,所以 最后一个非叶子节点是 a[(n+1)/2-1] 
 
* @param a 
* @param lastIndex 这个数组的最后一个元素 
*/
static void maxHeap(int a[], int lastIndex) {
    for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
       //反正 堆排序不稳定,先比较父与左子,大则交换;与右子同理。(不care 左子与右子位置是否变了!) 
        if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
            swap(a, i, i * 2 + 1);        
        }    
        if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
            swap(a, i, i * 2 + 2);        
        }
    }
}

private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
以上为堆排序算法详细介绍,插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等排序算法各有优缺点,用一张图概括:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模

k:"桶"的个数

In-place:占用常数内存,不占用额外内存

Out-place:占用额外内存

稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

显示全文
计数排序算法 桶排序算法 基数排序算法 排序算法 助人为乐的谚语和名言 春天的谚语 春分的谚语 团结的谚语 帮助人的谚语 谚语的意思 关于关爱的谚语 学习的名言 关于学习的名人名言 关于爱国的名言 陶渊明的名句 激励自己的名言 关于保护环境的名言 叶圣陶的名言 关于家的名言 关于交友的名言警句 快速排序算法 归并排序算法 希尔排序算法 插入排序算法 选择排序算法 冒泡排序算法 清明的谚语 关于清明的谚语 清明节的谚语 珍惜时间的名言 愁的诗句 含雁的诗句 想念的诗句 牡丹花的诗句 带马字的诗句 关于思念的诗句 描写春天花朵的诗句 js中toString方法3个作用 python绘图中的四个绘图技巧 图像检索之基于vlfeat实现SIFT特征