求函数的对称轴y=sinx对称轴为x=kπ+π/2,k为整数,对称中心为(kπ,0),k为整数。y=cosx对称轴为x=kπ,k为整数,对称中心为(kπ+π/2,0),k为整数。y=tanx对称中心为(kπ,0),k为整数,无对称轴。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ=kπ+π/2解出x即可求出对称轴,令ωx+Φ=kπ,解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+k的形式,那此处的纵坐标为k)余弦型,正切型函数类似。